
Spool valve pilot operated

- 4/2-way Impulse version detended
- 4/3-way with spring centred mid position
- 4/2-way with spring reset
- $Q_{max} = 100 \text{ l/min}, p_{max} = 315 \text{ bar}$

NG10

ISO 4401-05

DESCRIPTION

Pilot operated spool valve in flange type NG10 with 4 connections. Pilot valve as direct operated spool valve in a 5 chamber system. Spool made from hardened steel, valve body made from high grade hydraulic cast iron.

The solenoid coil is zinc-/nickel-coated. Solenoid coil in accordance with EC-Directive 94/9 (ATEX) for explosion-hazard zones.

Ex: In accordance with European standards EN 60079-0, EN 60079-1 (gas)

EN 61241-0, EN 61241-1 (dust) d: Flameproof enclosures tD: Protection by enclosure

Device group II: For all explosion-hazard zones, except mining

Gas group IIC: Gas groups IIA + IIB included Device cat. 2G: For zones 1 and 2 (gas)

Device cat. 2D: For zones 21 and 22 (dust) Zones: 1/21 and 2/22

EC-Type examination certificate:

PTB 07 ATEX 1023

By the actuation of the pilot control valve the spool of the main valve is brought into the corresponding switching position.

- 4/2-way impulse version detented
- 4/3-way with spring-centred mid position
- 4/2-way with spring reset

(See data sheet of pilot valve 1.3-23) The actuation of the pilot valve can be internal

or external, depending on the type of pilot operation.

APPLICATION

Spool valves are mainly utilised for controlling the direction of movement and for holding hydraulic cylinders and motors. The direction of movement is determined by the symbol. Pilot operated valves are utilised where large volume flows have to be controlled. These valves are suitable for hazardous areas in shipbuilding- and off-shore-applications as well as in chemical, oil and gas industry.

TYPE CODE

	A EXd VP 4 L9 #	
International connection standa	ırd ISO	
Pilot operated valve: Explosion proof version Pilot operated spool valve No. of control ports Symbols designation acc. to tab	ole 1.9-37/2	
Pilot control types: Pressure supply (x) and drain (y Pressure supply (x) and drain (y Pressure supply (x) internal dra Pressure supply (x) external dra	y) external te pi	
Standard nominal voltage $\mathbf{U}_{_{\mathrm{N}}}$	12 VDC G12 24 VDC G24 115 VAC R115 230 VAC R230	
Nominal power P _N :	Ambient temp. up to: 9W L9 40°C or 90°C	
Design-Index (Subject to change		

GENERAL SPECIFICATIONS

Admissible ambient temp.

Description 4/2-, 4/3-way valve Nominal size NG10 to ISO 4401-05 Construction Pilot operated spool valve Actuation Solenoid actuated Pilot valve BEXd4.4. Data sheet 1.3-23

Mounting Flange mounting

4 holes for socket cap screws M6x65

Threaded connection plates Connections

Multi-flange plates

Longitudinal stacking system -20...+40 °C (operation as T1...T6/T80 °C)

-20...+90 °C (operation as T1...T4/T130 °C) In case of U_N <20V, the max. ambient temperature has to be reduced by 10°C.

Mountin position any, preferably horizontal Fastering torque $M_D = 9.5 \text{ Nm (screw quality 8.8)}$

Weight: Main valve m = 3.6 kgSandwich plate m = 0.4 kg

> Pilot valve m = 2,6...4,4 kg depending on the

valve type

HYDRAULIC SPECIFICATIONS

Mineral oil, other fluid on request Fluid Contamination efficiency ISO 4406:1999, class 20/18/14

(Required filtration grade ß10...16≥75) refer to data sheet 1.0-50/2

Viscosity range 12 mm²/s...320 mm²/s -20...+40 °C (operation as T1...T6/T80 °C) Admissible fluid temp.

-20...+70 °C (operation as T1...T4/T130 °C) $p_{max} = 315 bar$ Operating pressure

in port P, A, B Tank pressure

 $p_{T \text{ max}} = 160 \text{ bar}$ at pilot supply te and pi $p_{T \text{ max}} = 100 \text{ bar at pilot supply ti and pe}$ $p_{T} \text{ minimum } 12 \text{ bar lower than } p_{v}$

 $p_{v min} = 12 bar$ $p_{v \text{ max}} = 315 \text{ bar}$ $Q_{\text{max}} = 100 \text{ l/min}$ see characteristics

in port T

Pilot over

sandwich plate

Max. volume flow

Leakage volume flow

ELECTRICAL CONTROL

Construction Solenoid, wet pin push type,

pressure-proof

Standard-nominal voltage $U_N = 12 \text{ VDC}, 24 \text{ VDC}$

 U_{N}^{N} = 115 VAC, U_{N} = 230 VAC AC = 50 to 60 Hz $\pm 2\%$; with built-in two-way rectifier and recovery diode

Relative duty factor 100 % DF Switching cycles 12000/h

Operating life 10^7 (number of switching cycles, theoretically) Connection/Power supply Through cable gland for cable

diameter 11...14 mm

Temperature class: T1...T6 (acc. to EN 60079-0)

Nominal power: 9 W

For further electrical characteristics, refer to the data sheet

of the solenoid coil 1.1-183

SECURITY OPERATED

The solenoid coil must only be put into operation, if the requirements of the operating instructions supplied are observed to their full extent.

In case of non-observance, no liability can be assumed.

INSTALLATION

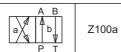
Tightening torque of the coil fixing nut $M_D = 15$ Nm. For stack assembly please observe the remarks in the operating instructions.

DESIGNATION

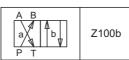
Execution L6: II 2 G Ex d IIC T6 Ta = -25...40 °C

II 2 D Ex tD A21 IP65 T80 °C

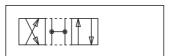
II 2 G Ex d IIC T4 Ta = -25...90 °C

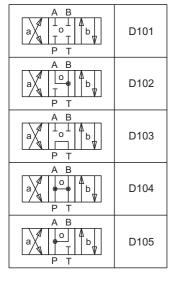

II 2 D Ex tD A21 IP65 T130 °C

TYPE LIST/DESIGNATION OF SYMBOLS

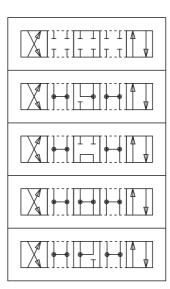

4/2-way-valve with 2 solenoids

A B J100


4/2-way-valve with spring reset actuation A-side

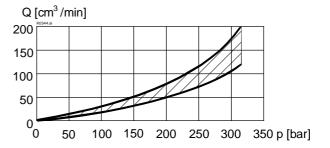

actuation B-side

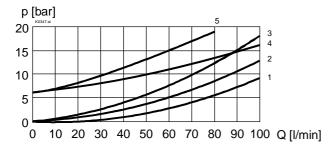
Transitional functions



A B a I I b T P T	Z101a
A B b T P T	Z102a
A B b P T	Z103a
A B b P T	Z104a
A B b T P T	Z105a

A B I I b T T V	Z101b
A B b T P T	Z102b
A B a b P T	Z103b
A B b P T	Z104b
A B b b P T	Z105b

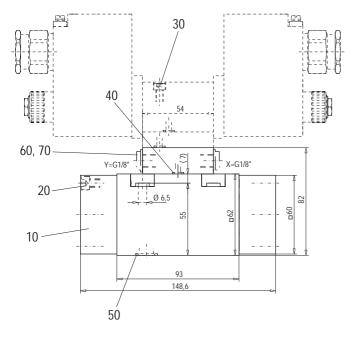


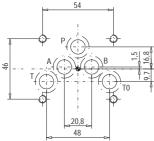

CHARACTERISTICS Oil viscosity $\upsilon = 30 \text{ mm}^2/\text{s}$

Q_i = f (p) Leakage volume flow characteristics per control edge

 $\Delta p = f(Q)$ Pressure drop volume flow characteristics

For pilot control types ti and pi


Pressure drop curve no.	Volume flow direction				
Symbol Curve no.	P-A	P - B	P - T	A - T	B - T
Z100/J100	1	1	-	1	2
D101/Z101	1	1	-	1	2
D102/Z102	1	1	-	1	2
D103/Z103	4	4	5	1	2
D104/Z104	4	4	-	1	2
D105/Z105	1	1	-	1	2


For pilot control types te and pe

Pressure drop curve no.	Volume flow direction				
Symbol Curve no.	P-A	P - B	P - T	A - T	B - T
Z100/J100	1	1	-	1	2
D101/Z101	1	1	-	1	2
D102/Z102	1	1	-	1	2
D103/Z103	1	1	3	1	2
D104/Z104	1	1	-	1	2
D105/Z105	1	1	-	1	2

DIMENSIONS

Mounting instruction

To screw the main valve body ($\rm M_D=9.5~Nm,~quality~8.8$) to the base plate the pilot valve ($\rm M_D=5.5~Nm,~quality~8.8$). must be taken off.

PARTS LIST

Position	Article	Description
10	059.2206	Cover
20	246.3131	Socket head cap screw M6x30 DIN 912
30	246.2160	Socket head cap screw M5x60 DIN 912
		for pilot supply ti
	246.2180	Socket head cap screw M5x80 DIN 912
		for pilot supply te, pi and pe
40	160.2052	O-ring ID 5,28x1,78
50	160.2140	O-ring ID 14,00x1,78
60	238.1202	Plug screw DIN 908 G1/8"
70	049.2102	Bonded seal ID 10,7x17x1,5

ACCESSORIES

Threaded connecting plates, Multi-flange subplates and Longitudinal stacking system see Reg. 2.9

Technical explanation see data sheet 1.0-100